188 research outputs found

    The Subtour Centre Problem

    Get PDF
    The subtour centre problem is the problem of finding a closed trail S of bounded length on a connected simple graph G that minimises the maximum distance from S to any vertex ofG. It is a central location problem related to the cycle centre and cycle median problems (Foulds et al., 2004; Labbé et al., 2005) and the covering tour problem (Current and Schilling, 1989). Two related heuristics and an integer linear programme are formulated for it. These are compared numerically using a range of problems derived from tsplib (Reinelt, 1995). The heuristics usually perform substantially better then the integer linear programme and there is some evidence that the simpler heuristics perform better on the less dense graphs that may be more typical of applications

    Insertion Heuristics for Central Cycle Problems

    Get PDF
    A central cycle problem requires a cycle that is reasonably short and keeps a the maximum distance from any node not on the cycle to its nearest node on the cycle reasonably low. The objective may be to minimise maximumdistance or cycle length and the solution may have further constraints. Most classes of central cycle problems are NP-hard. This paper investigates insertion heuristics for central cycle problems, drawing on insertion heuristics for p-centres [7] and travelling salesman tours [21]. It shows that a modified farthest insertion heuristic has reasonable worstcase bounds for a particular class of problem. It then compares the performance of two farthest insertion heuristics against each other and against bounds (where available) obtained by integer programming on a range of problems from TSPLIB [20]. It shows that a simple farthest insertion heuristic is fast, performs well in practice and so is likely to be useful for a general problems or as the basis for more complex heuristics for specific problems

    Data Envelopment Analysis Models of Investment Funds

    Get PDF
    Publisher PD

    A Resolved Ring of Debris Dust around the Solar Analog HD 107146

    Get PDF
    We present resolved images of the dust continuum emission from the debris disk around the young (80-200 Myr) solar-type star HD 107146 with CARMA at λ = 1.3 mm and the CSO at λ = 350 μ. Both images show that the dust emission extends over an approximately 10" diameter region. The high-resolution (3") CARMA image further reveals that the dust is distributed in a partial ring with significant decrease in a flux inward of 97 AU. Two prominent emission peaks appear within the ring separated by ~140° in the position angle. The morphology of the dust emission is suggestive of dust captured into a mean motion resonance, which would imply the presence of a planet at an orbital radius of ~45-75 AU

    Atmospheric phase correction using CARMA-PACS: high angular resolution observations of the FU Orionis star PP 13S*

    Get PDF
    We present 0".15 resolution observations of the 227 GHz continuum emission from the circumstellar disk around the FU Orionis star PP 13S*. The data were obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) Paired Antenna Calibration System (C-PACS), which measures and corrects the atmospheric delay fluctuations on the longest baselines of the array in order to improve the sensitivity and angular resolution of the observations. A description of the C-PACS technique and the data reduction procedures are presented. C-PACS was applied to CARMA observations of PP 13S*, which led to a factor of 1.6 increase in the observed peak flux of the source, a 36% reduction in the noise of the image, and a 52% decrease in the measured size of the source major axis. The calibrated complex visibilities were fitted with a theoretical disk model to constrain the disk surface density. The total disk mass from the best-fit model corresponds to 0.06 M_⊙, which is larger than the median mass of a disk around a classical T Tauri star. The disk is optically thick at a wavelength of 1.3 mm for orbital radii less than 48 AU. At larger radii, the inferred surface density of the PP 13S* disk is an order of magnitude lower than that needed to develop a gravitational instability

    Molecular Gas in the z=1.2 Ultraluminous Merger GOODS J123634.53+621241.3

    Get PDF
    We report the detection of CO(2-1) emission from the z=1.2 ultraluminous infrared galaxy (ULIRG) GOODS J123634.53+621241.3 (also known as the sub-millimeter galaxy GN26). These observations represent the first discovery of high-redshift CO emission using the new Combined Array for Research in Millimeter-Wave Astronomy (CARMA). Of all high-redshift (z>1) galaxies within the GOODS-North field, this source has the largest far-infrared (FIR) flux observed in the Spitzer 70um and 160um bands. The CO redshift confirms the optical identification of the source, and the bright CO(2-1) line suggests the presence of a large molecular gas reservoir of about 7x10^10 M(sun). The infrared-to-CO luminosity ratio of L(IR)/L'(CO) = 80+/-30 L(sun) (K Km/s pc^2)^-1 is slightly smaller than the average ratio found in local ULIRGs and high-redshift sub-millimeter galaxies. The short star-formation time scale of about 70 Myr is consistent with a starburst associated with the merger event and is much shorter than the time scales for spiral galaxies and estimates made for high-redshift galaxies selected on the basis of their B-z and z-K colors.Comment: Accepted for publication in ApJ Letter

    Dynamically Driven Evolution of the Interstellar Medium in M51

    Get PDF
    Massive star formation occurs in giant molecular clouds (GMCs); an understanding of the evolution of GMCs is a prerequisite to develop theories of star formation and galaxy evolution. We report the highest-fidelity observations of the grand-design spiral galaxy M51 in carbon monoxide (CO) emission, revealing the evolution of GMCs vis-a-vis the large-scale galactic structure and dynamics. The most massive GMCs (giant molecular associations (GMAs)) are first assembled and then broken up as the gas flow through the spiral arms. The GMAs and their H_2 molecules are not fully dissociated into atomic gas as predicted in stellar feedback scenarios, but are fragmented into smaller GMCs upon leaving the spiral arms. The remnants of GMAs are detected as the chains of GMCs that emerge from the spiral arms into interarm regions. The kinematic shear within the spiral arms is sufficient to unbind the GMAs against self-gravity. We conclude that the evolution of GMCs is driven by large-scale galactic dynamics—their coagulation into GMAs is due to spiral arm streaming motions upon entering the arms, followed by fragmentation due to shear as they leave the arms on the downstream side. In M51, the majority of the gas remains molecular from arm entry through the interarm region and into the next spiral arm passage
    corecore